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      Book description

      
"Head First Object Oriented Analysis and Design is a refreshing look at subject of OOAD. What sets this book apart is its focus on learning. The authors have made the content of OOAD accessible, usable for the practitioner."

Ivar Jacobson, Ivar Jacobson Consulting


"I just finished reading HF OOA&D and I loved it! The thing I liked most about this book was its focus on why we do OOA&D-to write great software!"

Kyle Brown, Distinguished Engineer, IBM


"Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted presentation of OO Analysis and Design. As I read the book, I felt like I was looking over the shoulder of an expert designer who was explaining to me what issues were important at each step, and why."

Edward Sciore,Associate Professor, Computer Science Department, Boston College


Tired of reading Object Oriented Analysis and Design books that only makes sense after you're an expert? You've heard OOA&D can help you write great software every time-software that makes your boss happy, your customers satisfied and gives you more time to do what makes you happy.


But how?


Head First Object-Oriented Analysis & Design shows you how to analyze, design, and write serious object-oriented software: software that's easy to reuse, maintain, and extend; software that doesn't hurt your head; software that lets you add new features without breaking the old ones. Inside you will learn how to:
	Use OO principles like encapsulation and delegation to build applications that are flexible
	Apply the Open-Closed Principle (OCP) and the Single Responsibility Principle (SRP) to promote reuse of your code
	Leverage the power of design patterns to solve your problems more efficiently
	Use UML, use cases, and diagrams to ensure that all stakeholders arecommunicating clearly to help you deliver the right software that meets everyone's needs.



By exploiting how your brain works, Head First Object-Oriented Analysis & Design compresses the time it takes to learn and retain complex information. Expect to have fun, expect to learn, expect to be writing great software consistently by the time you're finished reading this!
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