

Skip to main content

 [image: O'Reilly home]

 	
 	Sign In
	Try Now

	
 	Teams
 	For business
	For government
	For higher ed

	Individuals
	Features
 	All features
	Courses
	Certifications
	Interactive learning
	Live events
	Answers
	Insights reporting

	Blog
	Content sponsorship

 Get full access to Head First Object-Oriented Analysis and Design and 60K+ other titles, with a free 10-day trial of O'Reilly.

 There are also live events, courses curated by job role, and more.

 Start your free trial

 	

 [image: Head First Object-Oriented Analysis and Design]

 Head First Object-Oriented Analysis and Design

 by

 Brett McLaughlin,

 Gary Pollice,

 David West

 Released November 2006

 Publisher(s): O'Reilly Media, Inc.

 ISBN: 9780596008673

 Read it now on the O’Reilly learning platform with a 10-day free trial.

 O’Reilly members get unlimited access to books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

 Buy on Amazon
 Buy on ebooks.com

 Start your free trial

 Book description

"Head First Object Oriented Analysis and Design is a refreshing look at subject of OOAD. What sets this book apart is its focus on learning. The authors have made the content of OOAD accessible, usable for the practitioner."

Ivar Jacobson, Ivar Jacobson Consulting

"I just finished reading HF OOA&D and I loved it! The thing I liked most about this book was its focus on why we do OOA&D-to write great software!"

Kyle Brown, Distinguished Engineer, IBM

"Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted presentation of OO Analysis and Design. As I read the book, I felt like I was looking over the shoulder of an expert designer who was explaining to me what issues were important at each step, and why."

Edward Sciore,Associate Professor, Computer Science Department, Boston College

Tired of reading Object Oriented Analysis and Design books that only makes sense after you're an expert? You've heard OOA&D can help you write great software every time-software that makes your boss happy, your customers satisfied and gives you more time to do what makes you happy.

But how?

Head First Object-Oriented Analysis & Design shows you how to analyze, design, and write serious object-oriented software: software that's easy to reuse, maintain, and extend; software that doesn't hurt your head; software that lets you add new features without breaking the old ones. Inside you will learn how to:
	Use OO principles like encapsulation and delegation to build applications that are flexible
	Apply the Open-Closed Principle (OCP) and the Single Responsibility Principle (SRP) to promote reuse of your code
	Leverage the power of design patterns to solve your problems more efficiently
	Use UML, use cases, and diagrams to ensure that all stakeholders arecommunicating clearly to help you deliver the right software that meets everyone's needs.

By exploiting how your brain works, Head First Object-Oriented Analysis & Design compresses the time it takes to learn and retain complex information. Expect to have fun, expect to learn, expect to be writing great software consistently by the time you're finished reading this!

 Show and hide more

 Publisher resources

 View/Submit Errata

 Table of contentsProduct information

 Table of contents

 	

 Dedication

	

 A Note Regarding Supplemental Files

	

 Praise for Head First OOA&D

	

 Praise for other Head First books by the authors

	

 Praise for other Head First Books

	

 How to use this Book: Intro

 	

 Who is this book for?

	

 Who should probably back away from this book?

	

 We know what you’re thinking

	

 And we know what your brain is thinking

	

 Metacognition: thinking about thinking

	

 Here’s what WE did

	

 Here’s what YOU can do to bend your brain into submission

	

 Read Me

	

 The Technical Team

	

 Acknowledgements

	

 Special thanks

	

 1. Well-Designed Apps Rock: Great Software Begins Here

 	

 Rock and roll is forever!

	

 Rick’s shiny new application...

	

 Here what the code for Guitar.java looks like

	

 And Inventory.java...

	

 But then Rick started losing customers...

	

 What’s the FIRST thing you’d change?

	

 Great software is... more than just one thing

	

 Great software in 3 easy steps

	

 Remember Rick? Remember his lost customers?

	

 So let’s apply our 3 steps

	

 Ditching String comparisons

	

 Rick’s customers want choices!

	

 Test drive

	

 Back to our steps

	

 Looking for problems

	

 Analyze the search() method

	

 Now update your own code

	

 Update the Inventory class

	

 Getting ready for another test drive

	

 Getting back to Rick’s app...

	

 Design once, design twice

	

 Let’s make sure Inventory.java is (really) well-designed

	

 One last test drive (and an app ready for reuse)

	

 What we did

	

 Remember this poor guy?

	

 OOA&D is about writing great software, not doing a bunch of paperwork!

	

 2. Gathering Requirements: Give Them What They Want

 	

 You’ve got a new programming gig

	

 Todd and Gina: your first customer

	

 Let’s start with the dog door

	

 Test drive

	

 But when Gina tried it...

	

 Listen to the customer

	

 Creating a requirements list

	

 What does the dog door really need to do?

	

 Plan for things going wrong

	

 Alternate paths handle system problems

	

 (Re) introducing use cases

	

 One use case, three parts

	

 Checking your requirements against your use cases

	

 Is anything missing?

	

 So now can we write some code?

	

 Automatically closing the door

	

 We need a new simulator!

	

 Test drive, version 2.0

	

 It works! Let’s go show Todd and Gina...

	

 Reviewing the alternate path

	

 Test drive, version 2.1

	

 Delivering the new dog door

	

 Working app, happy customers

	

 3. Requirements Change: I Love You, You’re Perfect... Now Change

 	

 You’re a hero!

	

 But then came a phone call...

	

 Back to the drawing board

	

 The one constant in software analysis and design

	

 Optional Path? Alternate Path? Who can tell?

	

 Use cases have to make sense to you

	

 Start to finish: a single scenario

	

 Let’s get ready to code...

	

 Finishing up the requirements list

	

 Now we can start coding the dog door again

	

 Was that a “woof” I heard?

	

 Power up the new dog door

	

 Updating the dog door

	

 Simplifying the remote control

	

 A final test drive

	

 More Tools for your OOA&D Toolbox

	

 4. Analysis: Taking Your Software into the Real World

 	

 One dog, two dog, three dog, four...

	

 Your software has a context

	

 Identify the problem

	

 Plan a solution

	

 Update your use case

	

 A tale of two coders

 	

 Randy: simple is best, right?

	

 Sam: object lover extraordinaire

	

 Sam: updating the DogDoor class

	

 Comparing barks

 	

 Randy: I’ll just compare two strings

	

 Sam: I’ll delegate bark comparison

	

 Delegation in Sam’s dog door: an in-depth look

	

 The power of loosely coupled applications

	

 Back to Sam, Randy, and the contest...

 	

 Randy AND Sam: It works!

	

 Maria won the MacBook Pro!

	

 So what did Maria do differently?

	

 Pay attention to the nouns in your use case

	

 It’s all about the use case

	

 There is no Bark class here!

	

 One of these things is not like the other...

 	

 Focus: owner’s dog

	

 Focus: owner’s dog’s bark

	

 Remember: pay attention to those nouns!

	

 From good analysis to good classes...

	

 Class diagrams dissected

	

 Class diagrams aren’t everything

	

 So how does recognize() work now?

	

 5. (Part 1) Good Design = Flexible Software: Nothing Ever Stays the Same

 	

 Rick’s Guitars Stringed Instruments is expanding

	

 Let’s put our design to the test

	

 Did you notice that abstract base class?

	

 We’ll need a MandolinSpec class, too

	

 Behold: Rick’s new application

	

 Class diagrams dissected (again)

	

 Let’s code Rick’s new search tool

	

 Create an abstract class for instrument specifications

	

 Let’s code GuitarSpec...

	

 ... and MandolinSpec, too

	

 Finishing up Rick’s search tool

	

 Uh oh... adding new instruments is not easy!

	

 So what are we supposed to do now?

	

 OO CATASTROPHE: Objectville’s Favorite Quiz Show

	

 “What is an INTERFACE?”

	

 “What is ENCAPSULATION?”

	

 “What is CHANGE?”

	

 (part 2) good design = flexible software: Give Your Software a 30-minute Workout

	

 Back to Rick’s search tool

	

 A closer look at the search() method

	

 The benefits of our analysis

	

 A closer look at the instrument classes

	

 But classes are really about behavior!

	

 Death of a design (decision)

	

 Let’s turn some bad design decisions into good ones

	

 One more cubicle conversation (and some help from Jill)

	

 “Double encapsulation” in Rick’s software

	

 Getting dynamic with instrument properties

	

 What we did: a closer look

	

 Using the new Instrument and InstrumentSpec classes

	

 Finishing up Rick’s app: the InstrumentType enum

	

 Let’s update Inventory, too

	

 Behold: Rick’s flexible application

	

 But does the application actually work?

	

 Test driving Rick’s well-designed software

	

 Rick’s got working software, his client has three choices

	

 Sweet! Our software is easy to change... but what about that “cohesive” thing?

	

 Cohesion, and one reason for a class to change

	

 Rick’s software, in review

	

 Knowing when to say “It’s good enough!”

	

 6. Solving Really Big Problems: “My Name is Art Vandelay... I am an Architect”

 	

 It’s all in how you look at the big problem

	

 The things you already know...

	

 So let’s solve a BIG problem!

	

 We need a lot more information

	

 What is the system like?

	

 What is the system not like?

	

 Customer Conversation

	

 Figure out the features

	

 But what is a feature, anyway?

	

 Use case diagrams

 	

 But there’s one feature still left... what up with that?

	

 The Little Actor

 	

 A small Socratic exercise in the style of The Little Lisper

	

 Actors are people, too (well, not always)

	

 Use case diagram... check! Features covered... check!

	

 So what exactly have we done?

	

 Cubicle Conversation

	

 Let’s do a little domain analysis!

	

 What most people give the customer...

	

 What we’re giving the customer...

	

 Now divide and conquer

	

 Don’t forget who your customer really is

	

 What’s a design pattern? And how do I use one?

	

 Feeling a little bit lost?

	

 The power of OOA&D (and a little common sense)

	

 7. Architecture: Bringing Order to Chaos

 	

 Feeling a little overwhelmed?

	

 We need an architecture

	

 Architecture takes a big chaotic mess...

	

 ... and helps us turn it into a well-ordered application

	

 Let’s start with functionality

	

 But which of these are the most important?

	

 The three Qs of architecture

	

 1. Is it part of the essence of the system?

	

 2. What the fuck does it mean?

	

 3. How the “heck” do I do it?

	

 We’ve got a lot less chaos now...

	

 ... but there’s still plenty left to do

	

 Cubicle Argument Conversation

	

 The Tile and Unit classes

 	

 Keep the right focus

	

 More order, less chaos

 	

 We’ve got structure now, too...

	

 Which feature should we work on next?

	

 Game-specific units... what does that mean?

	

 Commonality revisited

	

 Solution #1: It’s all different!

	

 Solution #2: It’s all the same!

	

 Commonality analysis: the path to flexible software

	

 And still more order...

	

 What does it mean? Ask the customer

	

 Do you know what “coordinating movement” means?

	

 Now do some commonality analysis

	

 So now what would you do?

	

 Is there anything common here?

	

 It’s “different for every game”

	

 Reducing risk helps you write great software

	

 8. Design Principles: Originality is Overrated

 	

 Design principle roundup

	

 Principle #1: The Open-Closed Principle (OCP)

 	

 Closed for modication...

	

 ... but open for extension

	

 Remember working on Rick’s Stringed Instruments?

	

 The OCP, step-by-step

	

 Principle #2: The Don’t Repeat Yourself Principle (DRY)

 	

 A prime place to apply DRY...

	

 1. Let’s abstract out the common code

	

 2. Now remove the code from other locations...

	

 3. ...and reference the code from Step #1

	

 DRY is really about ONE requirement in ONE place

	

 Principle #3: The Single Responsibility Principle (SRP)

	

 Spotting multiple responsibilities

	

 Going from multiple responsibilities to a single responsibility

	

 Contestant #4: The Liskov Substitution Principle (LSP)

	

 Misusing subclassing: a case study in misusing inheritance

	

 LSP reveals hidden problems with your inheritance structure

	

 “Subtypes must be substitutable for their base types”

	

 Violating the LSP makes for confusing code

	

 Solving the 3DBoard problem without using inheritance

	

 Delegate functionality to another class

	

 When to use delegation

	

 Use composition to assemble behaviors from other classes

	

 When to use composition

	

 When the pizza is gone, so are the ingredients...

	

 Aggregation: composition, without the abrupt ending

 	

 You’ve already used aggregation...

	

 Aggregation versus composition

	

 Inheritance is just one option

	

 9. Iterating and Testing: The Software is Still for the Customer

 	

 Your toolbox is filling up

	

 But you’re still writing your software for the CUSTOMER!

	

 Iterating deeper: two basic choices

	

 Feature driven development

	

 Use case driven development

	

 Two approaches to development

 	

 What’s the difference between feature driven and use case driven development?

	

 Let’s use feature driven development

	

 Analysis of a feature

 	

 3. The framework supports multiple types of troops or units that are game-specific

	

 Fleshing out the Unit class

	

 Showing off the Unit class

	

 Writing test scenarios

 	

 Scenario #2: Changing property values

	

 Scenario #3: Getting non-existent property values

	

 Solution #1: Emphasizing Commonality

 	

 Design decisions are always a tradeoff

	

 Solution #2: Emphasizing Encapsulation

 	

 Tradeoffs with this decision, too...

	

 Let’s go with the commonality-focused solution

	

 Match your tests to your design

	

 Let’s write the Unit class

	

 Test cases dissected...

	

 Prove yourself to the customer

	

 We’ve been programming by contract so far

 	

 This is the contract for Unit

	

 Programming by contract is really all about trust

	

 And we can always change the contract if we need to...

	

 But if you don’t trust your users...

	

 -or if they don’t trust you...

	

 Moving units

 	

 Haven’t we been here before?

	

 Break your apps up into smaller chunks of functionality

 	

 But you can still break things up further...

	

 Your decisions can iterate down, too

	

 10. The OOA&D Lifecycle: Putting It All Together

 	

 Developing software, OOA&D style

	

 The problem

	

 Now you should really know what you’re supposed to do

	

 Use cases reflect usage, features reflect functionality

	

 Now start to iterate

	

 A closer look at representing a subway

 	

 What is a station?

	

 And a connection between two stations?

	

 Then a line is just a series of connections...

	

 Let’s take a look at that subway file

	

 Let’s see if our use case works

	

 To use a Line class or not to use a Line class... that is the question

	

 Code the Station class

	

 Code the Subway class

	

 Points of interest on the Objectville Subway (class)

 	

 What Java’s default equals() implementation does...

	

 What our equals() implementation does...

	

 Protecting your classes (and your client’s classes, too)

	

 The SubwayLoader class

	

 It’s time to iterate again

	

 But before we start Iteration 2...

	

 What’s left to do?

	

 Back to the requirements phase...

	

 Focus on code, then focus on customers. Then focus on code, then focus on customers...

	

 Iteration makes problems easier

	

 Implementation: Subway.java

	

 What does a route look like?

	

 One last test class...

	

 Check out Objectville for yourself!

	

 Iteration #3, anyone?

 	

 Make loading more extensible

	

 Allow different output sources (and formats!)

	

 The journey’s not over...

	

 Now take OOA&D for a spin on your own projects!

	

 A. Leftovers: The Top Ten Topics (we didn’t cover)

 	

 #1. IS-A and HAS-A

 	

 IS-A refers to inheritance

	

 HAS-A refers to composition or aggregation

	

 The problem with IS-A and HAS-A

	

 #2. Use case formats

	

 Focusing on interaction

	

 A more formal use case

	

 #3. Anti patterns

	

 #4. CRC cards

	

 CRC cards help implement the SRP

	

 #5. Metrics

	

 #6. Sequence diagrams

	

 #7. State diagrams

	

 #8. Unit testing

	

 What a test case looks like

 	

 Test your code in context

	

 #9. Coding standards and readable code

	

 Great software is more than just working code

	

 #10. Refactoring

	

 B. Welcome to Objectville: Speaking the Language of OO

 	

 Welcome to Objectville

	

 UML and class diagrams

	

 Next up: inheritance

	

 And polymorphism, too...

	

 Last but not least: encapsulation

	

 Now anyone can set the speed directly

	

 So what’s the big deal?

	

 Index

	

 About the Authors

	

 Copyright

 Show and hide more

 Product information

 	Title: Head First Object-Oriented Analysis and Design
	Author(s): Brett McLaughlin, Gary Pollice, David West
	Release date: November 2006
	Publisher(s): O'Reilly Media, Inc.
	ISBN: 9780596008673

 You might also like

 book

 Head First Design Patterns, 2nd Edition

 by

 Eric Freeman,

 Elisabeth Robson

 What will you learn from this book? You know you don't want to reinvent the wheel, …

 book

 Head First Design Patterns

 by

 Eric Freeman,

 Elisabeth Robson,

 Bert Bates,

 Kathy Sierra

 What’s so special about design patterns? At any given moment, someone struggles with the same software …

 book

 Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, Third Edition

 by

 Craig Larman

 “This edition contains Larman’s usual accurate and thoughtful writing. It is a very good book made …

 book

 Object-Oriented Analysis and Design with Applications, 3rd Edition

 by

 Grady Booch,

 Robert A. Maksimchuk,

 Michael W. Engle,

 Bobbi J. Young,

 Jim Conallen,

 Kelli A. Houston

 Object-Oriented Design with Applications has long been the essential reference to object-oriented technology, which, in turn, …

 About O’Reilly

 	Teach/write/train
	Careers
	Press releases
	Media coverage
	Community partners
	Affiliate program
	Submit an RFP
	Diversity
	O’Reilly for marketers

 Support

 	Contact us
	Newsletters
	Privacy policy

 International

 	Australia & New Zealand
	Hong Kong & Taiwan
	India
	Indonesia
	Japan

 Download the O’Reilly App

 Take O’Reilly with you and learn anywhere, anytime on your phone and tablet.

 [image: Apple app store]
 [image: Google play store]

 Watch on your big screen

 View all O’Reilly videos, Superstream events, and Meet the Expert sessions on your home TV.

 [image: Roku Payers and TVs]
 [image: Amazon appstore]

 Do not sell my personal information

 [image: O'Reilly home]

 © 2024, O’Reilly Media, Inc. All trademarks and registered trademarks appearing on oreilly.com are the property of their respective owners.

 We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.

 Terms of service • Privacy policy • Editorial independence

 Don’t leave empty-handed

 Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

 It’s yours, free.

 Get it now

 [image: Cover of Software Architecture Patterns]

 Close

 Check it out now on O’Reilly

 Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

 Start your free trial

 Become a member now

 [image:]

 Close

